1 配送 121TTT
1.1 配送集成ADSAS1
简介:生产与配送集成调度是近些年来热门的研究领域。大多数学者认为 (Potts, 1980)是该领域的开篇之作。随着该领域专家学者的不断拓展和深入,集成调度的相关研究得到了空前的发展。各方面的理论和方法也不断被提出,可参照综述文献 (Chen, 2010),(Moons et al., 2017), (Kumar et al., 2020)进行系统的梳理。
根据问题特征我们对如下数据集进行简要描述:
- 生产调度:(作业车间调度、流水车间调度(流水线、置换、混流)、分布式车间调度、柔性调度、模糊调度、动态调度 等)
- 配送调度:(运输问题、车辆路径问题(容量限制、时间窗约束、多行程等))
我们所提出的数据集所应用的模型涉及:
流水线生产 & 车辆路径问题(考虑容量限制、时间窗约束、多行程)&模糊旅途时间1.1 配送集成ADSAS1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 var _prevOnload = window.onload;
window.onload = function () {
var switchLang = document.getElementsByClassName("menu-item menu-item-switch-to-chinese")[0];
switchLang.onclick = function () {
var href = window.location.href;
var includesKeywords = href.includes("/homepage/") || href.includes("/home/")|| href.includes("/publications/") || href.includes("/resources/")|| href.includes("/link/")|| href.includes("/archives/")|| href.includes("/Switch to Chinese/");
if (includesKeywords) {
window.location.href = href.replace('.cn/', '.cn/cn/');
}
else {
window.location.href = "https://www.huangm.cn/cn";
}
if (typeof (_prevOnload) === 'function') {
_prevOnload();
}
return false;
}
}1.1 配送集成ADSAS1
1.1 配送集成ADSAS1
This simple example can illustrate why the RM algorithm converges.1.4配送集成
- When $w_k>w^$, we have $g\left(w_k\right)>0$. Then, $w_{k+1}=w_k-a_k g\left(w_k\right)<w_k$. If $a_k g\left(w_k\right)$ is sufficiently small, we have $w^<w_{k+1}<w_k$. As a result, $w_{k+1}$ is closer to $w^*$ than $w_k$.
- When $w_k
w_k$. If $\left|a_k g\left(w_k\right)\right|$ is sufficiently small, we have $w^>w_{k+1}>w_k$. As a result, $w_{k+1}$ is closer to $w^$ than $w_k$.
where $x_k$ is the sample collected at time step $k$. It relies on stochastic samples ${x_k}$
Compared to the gradient descent algorithm: Replace the true gradient $\mathbb{E}\left[\nabla_w f\left(w_k, X\right)\right]$ by the stochastic gradient $\nabla_w f\left(w_k, x_k\right)$.
Compared to the batch gradient descent method: let $n=1$.
From GD to SGD: The stochastic gradient $\nabla_w f\left(w_k, x_k\right)$ can be viewed as a noisy measurement of the true gradient $\mathbb{E}\left[\nabla_w f(w, X)\right]$: